
Meta Learning
MIT

Iddo Drori, Fall 2020

Automated Machine Learning

2

• Why automate machine learning?

• Which elements of machine learning can we automate?

Automated Machine Learning

3

• Activation functions

• Optimizers

• Data augmentation

• Algorithm selection and hyperparameter optimization

• Neural network architectures

• Feature extraction and selection

• Machine learning and data science pipelines

Automated Activation Functions

4
Source: Searching for Activation Functions, Ramachandran et al 2017.

• Search space:

Automated Optimizer

5
Figure source: Neural Optimizer Search with Reinforcement Learning, Bello et al 2017.

• Search space:

Automated Data Augmentation

6
Figure source: AutoAugment: Learning Augmentation Strategies from Data, Cubuk et al, 2019.

Automated Machine Learning

task1
data

task2
data

task
data

new
task
data

ML
system

AutoML
algorithm

learning
algorithm

test
data prediction

task1
data

task2
data

task
data

tasks = {binary classification, multi-class classification, regression,...}

Hyperparameter
Optimization

Hyperparameters

9

• Learning rate alpha

• Momentum term beta

• Minibatch size

• # of layers

• # of hidden units

• Learning rate decay
...

Hyperparameter Optimization

10

• Given dataset D find hyperparameters which minimize the loss of a model
generated by algorithm A trained on and evaluated on

Grid Search

11

• Regularly sample grid
• Test grid values

hyperparameter 1

hyperparameter 2

Random Search

12

• Randomly sample grid
• Test random values

hyperparameter 1

hyperparameter 2

Grid Search vs. Random Search

13
Figure source: Random search for hyper-parameter optimization, James Bergstra and Yoshua Bengio, JMLR 2012

Coarse to Fine Optimization

14

• Efficient optimization

• Sample examples

• Sample features

Adaptive Coarse to Fine Sampling

15

• Zoom in
• Perform dense search in small region of relevant values

hyperparameter 1

hyperparameter 2

Covariance Matrix Adaptation Evolution Strategy

16

• Model free
• Evaluate multiple points in parallel rather than a single point sequentially
• Sample new configurations
• Reorder configurations based on fitness
• Update state variables, covariance, based on ordered solutions

performance

Bayesian Optimization

17

• Black-box optimization

• Minimize unknown objective function which is costly to evaluate and we may only
observe the function value.

𝒙∗ = argmin 𝒇(𝒙)

• Used to select model hyperparameters

• Construct sequence of points 𝒙1...𝒙n that converge to 𝒙∗

• Goal is to get best approximate solution given allocated budget of n samples

Solution: Bayesian Optimization

18

• Place a prior on the objective function 𝒇

• Each time we evaluate 𝒇 at a new point 𝒙i, we update our model for 𝒇(𝒙)

• Model is cheap surrogate objective function reflecting beliefs about 𝒇

• Beliefs are encoded in posterior

• Use posterior to derive acquisition function α(𝒙) which is fast to evaluate and
differentiate, for example by gradient descent, evaluating α(𝒙) at many points 𝒙.

Bayesian Optimization

19

Repeat until convergence

Use the acquisition function to derive next query point according to
𝒙i+1 = argmin 𝜶(𝒙)

Evaluate 𝒇(𝒙i+1) and update posterior

• Model for 𝒇 and acquisition function evolve

Gaussian Processes

20

Figure source: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning, Eric Brochu, Vlad M. Cora, Nando de Freitas, 2010.

Exploration vs. Exploitation

21

0

1

3

2

v() = 0

v() = 1

v() = 2 mean

v() = 2
which to choose next?

or

Acquisition Function

22

• Balance exploration and exploitation
• Lower confidence bound acquisition function

𝜶(𝒙) = μ(𝒙) − κσ(𝒙)

• μ(𝒙) and σ(𝒙) are mean and square root variance of posterior at point 𝒙

• 𝜶(𝒙) minimized for 𝒙 where:
μ(𝒙) is small, exploitation
σ(𝒙) is large, exploration

• κ>0 controls trade-off between exploitation and exploration
small κ, encourages exploitation
large κ, encourages exploration

Acquisition Function Optimization

23

• Seed minimization algorithm with multiple values

• Run minimization algorithm to approximate convergence for
each value

• Select value which minimizes acquisition function

Bayesian Optimization

24Figure source: pyro.ai

Bayesian Optimization

25Figure source: pyro.ai

Bayesian Optimization

26Figure source: pyro.ai

Bayesian Optimization

27Figure source: pyro.ai

Gaussian Processes

28

Figure source: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning, Eric Brochu, Vlad M. Cora, Nando de Freitas, 2010.

Bayesian Optimization

29

• Build probabilistic model of objective

• Compute posterior distribution: Gaussian processes

• Optimize cheap surrogate function rather than expensive objective

Bayesian Optimization

30

Source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin Swersky,
Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.

Bayesian Optimization

31

Mean and confidence intervals estimated with a probabilistic model of objective function
High acquisition where model predicts high objective (exploitation) & prediction uncertainty is high (exploration)

Figure source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin
Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.

Bayesian Optimization

32

Figure source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin
Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.

Bayesian Optimization

33

Figure source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin
Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.

Acquisition Functions

34

• Maximum probability of improvement: exploitation

• Expected improvement

• Upper confidence bound (UCB)

Maximum Probability of Improvement

35

Figure source: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning, Eric Brochu, Vlad M. Cora, Nando de Freitas, 2010.

Acquisition Functions

36

expected improvement

UCB

probability of improvement

Scale

37

• Log scale
• 1 - value
• Beta distribution

replace range by parameters of beta distribution
optimize those

Multiple Objectives

38

• Performances

• Time

• Memory

• Constraints

Algorithm Selection and Hyperparameter Optimization

39

Ensemble of Models

40

• Models m
• Classes j
• Take argmax over average of probabilities over models for

each class

Algorithm Selection and Hyperparameter Optimization

41

Model Stacking
1

2

3

4

5

6

7

8

9

10

1 1 1 1 1 1 1 1 1

training
set

model 1
fold 1

predictions

model 10
fold 1

predictions
training on
folds 2-10

model 2
fold 1

predictions

train

predict

Same folds for all models

Model Stacking
1

2

3

4

5

6

7

8

9

10

training
set

model 1
fold 2

predictions

model 10
fold 2

predictions
training on

folds 1,3,...,10

model 2
fold 2

predictions

predict 2 2 2 2 2 2 2 2 2

train

train

Same folds for all models

Model Stacking
1

2

3

4

5

6

7

8

9

10

training
set

model 1
fold 10

predictions

model 10
fold 10

predictions
training on
folds 1,...,9

model 2
fold 10

predictions

10 10 10 10 10 10 10 10 10predict

train

Same folds for all models

Model Stacking a Super-model Using Meta-features
1

2

3

4

5

6

7

8

9

10

model 1 fold 1
predictions

training

model 2 fold 1
predictions

model 10 fold 1
predictions

model 3 fold 1
predictions

model 4 fold 1
predictions

model 5 fold 1
predictions

model 6 fold 1
predictions

model 7 fold 1
predictions

model 8 fold 1
predictions

model 9 fold 1
predictions

model 1 fold 10
predictions

model 2 fold 10
predictions

model 10 fold 10
predictions

model 3 fold 10
predictions

model 4 fold 10
predictions

model 5 fold 10
predictions

model 6 fold 10
predictions

model 7 fold 10
predictions

model 8 fold 10
predictions

model 9 fold 10
predictions

model 1 fold 2
predictions

model 2 fold 2
predictions

model 10 fold 2
predictions

model 3 fold 2
predictions

model 4 fold 2
predictions

model 5 fold 2
predictions

model 6 fold 2
predictions

model 7 fold 2
predictions

model 8 fold 2
predictions

model 9 fold 2
predictions

validation

test

use level-1 model predictions as meta features for super stacked model

Neural Architecture Search

46

● Developing novel neural architectures manually is time
consuming, error prone

● Automatic methods for searching for neural network
architectures

● Search space of architectures: chain, directed acyclic graph
(DAG)

● Search strategy: exploration and exploitation trade-off
● Efficient performance estimation

Neural Architecture Search

47

input L1 L2 Ln outputchain

inputDAG output

Neural Architecture Search

48

Controller RNN Train child NN
Evaluate performance

sample architecture A
with probability p

update
controller

Figure source: Zoph et al, 2017.

Machine Learning Pipelines

49

?

Machine Learning Pipelines

50

Meta Data About

51

• Data

• Task

• Solution

Gradient Based Methods

52

• Differentiable primitives

• Form a directed acyclic graph (DAG)

• Differentiable programming: optimize end-to-end
End-to-end training of differentiable pipelines across machine learning frameworks, Mitar et al, 2017.

DARPA Data Driven Discovery of Models (D3M)

53

• Goal: solve any task on any dataset specified by a user.

• Broad set of computational primitives as building blocks.

• Automatic systems for machine learning, synthesize pipeline and
hyperparameters to solve a previously unknown data and problem.

• Human in the loop: user interface that enables users to interact with and improve
the automatically generated results.

• Pipelines: pre-processing, feature extraction, feature selection, estimation, post-
processing, evaluation

Dataset Meta Features

54

AutoML Systems

55

• Bayesian optimization, hyperparameter tuning:
Autosklearn (Feurer et al, NIPS 2015), AutoWEKA (Kotthoff et al, JMLR 2017)

• Tree search of algorithms and hyperparameters, multi-armed bandit
Auto-Tuned Models (Swearingen et al, Big Data 2017)

• Deep reinforcement learning: expert iteration
AlphaD3M (Drori et al, AutoML 2018)

• Evolutionary algorithms
– TPOT (Olson et al, ICML 2016) machine learning pipelines as trees
– Autostacker (Chen et al, GECCO 2018) ML pipelines as stacked layers.

• Collaborative filtering: OBOE, Yang et al, 2018.

• Neural architecture search: AutoKeras: Jin et al, 2018.

• Stacking, ensembles: GluonAutoML, GCP-Tables, H2O

AlphaD3M Single Player Game Representation

56

• Expert iteration: iterative improvement

Figure source: AlphaD3M: Machine Learning Pipeline Synthesis, Drori et al, 2018.

Pipeline Encoding

57

• Model meta-data, task, and entire pipeline chain as state rather than individual primitive

AutoML

58

Figure source: AlphaD3M: Machine Learning Pipeline Synthesis, Drori et al, 2018.

AutoML by Pipeline Synthesis

59

Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement
Learning and a Grammar, Drori et al 2019.

AutoML by Pipeline Synthesis

60

Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement
Learning and a Grammar, Drori et al 2019.

• Enforce a grammar on the solution, accept valid pipelines.

AutoML by Pipeline Synthesis

61

Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement
Learning and a Grammar, Drori et al 2019.

AutoML by Pipeline Synthesis

62

Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement
Learning and a Grammar, Drori et al 2019.

Matrix Completion: Example Problem

63

items

users

i,j

Naive Solution

64

Naive Solution

65

Content-Based Recommendation

66

Problem

67

Iterative Solution

68

Collaborative Filtering Solution

69

Collaborative Filtering Solution

70

Neural Collaborative Filtering

71

AutoML by Collaborative Filtering

72

• Factors are datasets and algorithms

• Serves as fast warm start systems

datasets

algorithms

i,j

AutoML by Collaborative Filtering

73

Figure source: Oboe: Collaborative Filtering for AutoML Model Selection, Yang et al, 2019.

AutoML using Metadata Embeddings

74

• When approaching an ML or DS problem humans read the
documentation

• Description of data and task
• Description of machine learning functions available for solution

• How can we allow an AutoML method to “read the descriptions or
manual”?

AutoML using Metadata Embeddings

75

• Humans read documentation

• Description of data and task
• Description of machine learning functions available for solution

• Use large scale transformer models to represent descriptions

AutoML using Metadata Embeddings

76

Figure source: AutoML using metadata language embeddings, Drori et al 2019.

AutoML using Metadata Embeddings

77

Figure source: AutoML using metadata language embeddings, Drori et al 2019.

AutoML using Metadata Embeddings

78

Figure source: AutoML using metadata language embeddings, Drori et al 2019.

AutoML using a Dataset Graph Representation

● Node i: dataset
● Edge (i,j) between datasets: based on embedding of dataset description and meta-features
● Predicts machine learning pipeline for new dataset in real-time (ms), runs pipeline and tuning in seconds
● GNN on graph of datasets sharing information between different datasets
● Embeddings of dataset descriptions and algorithm descriptions
● Leveraging existing AutoML systems

79Figure source: Zero-shot AutoML, Drori et al 2020.

Zero-Shot AutoML

80
Figure source: Zero-shot AutoML, Drori et al 2020.

Zero-Shot AutoML

81Figure source: Zero-shot AutoML, Drori et al 2020.

Zero-Shot AutoML

82

Figure source: Zero-shot AutoML, Drori et al 2020.

Meta Learning
MIT

Iddo Drori, Fall 2020

