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Automated Machine Learning
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• Why automate machine learning?

• Which elements of machine learning can we automate?



Automated Machine Learning
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• Activation functions

• Optimizers

• Data augmentation

• Algorithm selection and hyperparameter optimization

• Neural network architectures

• Feature extraction and selection

• Machine learning and data science pipelines



Automated Activation Functions
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Source: Searching for Activation Functions, Ramachandran et al 2017.

• Search space:



Automated Optimizer
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Figure source: Neural Optimizer Search with Reinforcement Learning, Bello et al 2017.

• Search space:



Automated Data Augmentation
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Figure source: AutoAugment: Learning Augmentation Strategies from Data, Cubuk et al, 2019.



Automated Machine Learning
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Hyperparameter 
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Hyperparameters
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• Learning rate alpha

• Momentum term beta

• Minibatch size

• # of layers

• # of hidden units

• Learning rate decay
...



Hyperparameter Optimization
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• Given dataset D find hyperparameters      which minimize the loss of a model 
generated by algorithm A trained on               and evaluated on



Grid Search
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• Regularly sample grid
• Test grid values

hyperparameter 1

hyperparameter 2



Random Search
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• Randomly sample grid
• Test random values

hyperparameter 1

hyperparameter 2



Grid Search vs. Random Search
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Figure source: Random search for hyper-parameter optimization, James Bergstra and Yoshua Bengio, JMLR 2012



Coarse to Fine Optimization
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• Efficient optimization

• Sample examples

• Sample features



Adaptive Coarse to Fine Sampling
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• Zoom in
• Perform dense search in small region of relevant values

hyperparameter 1

hyperparameter 2



Covariance Matrix Adaptation Evolution Strategy

16

• Model free
• Evaluate multiple points in parallel rather than a single point sequentially
• Sample new configurations
• Reorder configurations based on fitness
• Update state variables, covariance, based on ordered solutions

performance



Bayesian Optimization
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• Black-box optimization

• Minimize unknown objective function which is costly to evaluate and we may only 
observe the function value.

𝒙∗ = argmin 𝒇(𝒙)

• Used to select model hyperparameters

• Construct sequence of points 𝒙1...𝒙n that converge to 𝒙∗

• Goal is to get best approximate solution given allocated budget of n samples



Solution: Bayesian Optimization
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• Place a prior on the objective function 𝒇

• Each time we evaluate 𝒇 at a new point 𝒙i, we update our model for 𝒇(𝒙)

• Model is cheap surrogate objective function reflecting beliefs about 𝒇

• Beliefs are encoded in posterior

• Use posterior to derive acquisition function α(𝒙) which is fast to evaluate and 
differentiate, for example by gradient descent, evaluating α(𝒙) at many points 𝒙.



Bayesian Optimization
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Repeat until convergence

Use the acquisition function to derive next query point according to
𝒙i+1 = argmin 𝜶(𝒙)

Evaluate 𝒇(𝒙i+1) and update posterior

• Model for 𝒇 and acquisition function evolve



Gaussian Processes
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Figure source: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and 
hierarchical reinforcement learning, Eric Brochu, Vlad M. Cora, Nando de Freitas, 2010.



Exploration vs. Exploitation
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Acquisition Function
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• Balance exploration and exploitation
• Lower confidence bound acquisition function

𝜶(𝒙) = μ(𝒙) − κσ(𝒙)

• μ(𝒙) and σ(𝒙) are mean and square root variance of posterior at point 𝒙

• 𝜶(𝒙) minimized for 𝒙 where:
μ(𝒙) is small, exploitation
σ(𝒙) is large, exploration

• κ>0 controls trade-off between exploitation and exploration
small κ, encourages exploitation
large κ, encourages exploration



Acquisition Function Optimization
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• Seed minimization algorithm with multiple values

• Run minimization algorithm to approximate convergence for 
each value

• Select value which minimizes acquisition function



Bayesian Optimization

24Figure source: pyro.ai



Bayesian Optimization

25Figure source: pyro.ai



Bayesian Optimization

26Figure source: pyro.ai



Bayesian Optimization

27Figure source: pyro.ai



Gaussian Processes
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Figure source: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and 
hierarchical reinforcement learning, Eric Brochu, Vlad M. Cora, Nando de Freitas, 2010.



Bayesian Optimization
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• Build probabilistic model of objective

• Compute posterior distribution: Gaussian processes

• Optimize cheap surrogate function rather than expensive objective



Bayesian Optimization
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Source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin Swersky, 
Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.



Bayesian Optimization
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Mean and confidence intervals estimated with a probabilistic model of objective function
High acquisition where model predicts high objective (exploitation) & prediction uncertainty is high (exploration)

Figure source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin 
Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.



Bayesian Optimization
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Figure source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin 
Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.



Bayesian Optimization
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Figure source: Taking the human out of the loop: A review of Bayesian optimization, Bobak Shahriari, Kevin 
Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas, IEEE, 2016.



Acquisition Functions
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• Maximum probability of improvement: exploitation

• Expected improvement

• Upper confidence bound (UCB)



Maximum Probability of Improvement
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Figure source: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and 
hierarchical reinforcement learning, Eric Brochu, Vlad M. Cora, Nando de Freitas, 2010.



Acquisition Functions
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expected improvement

UCB

probability of improvement



Scale
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• Log scale
• 1 - value
• Beta distribution

replace range by parameters of beta distribution
optimize those



Multiple Objectives
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• Performances

• Time

• Memory

• Constraints



Algorithm Selection and Hyperparameter Optimization
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Ensemble of Models
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• Models m
• Classes j
• Take argmax over average of probabilities over models for 

each class



Algorithm Selection and Hyperparameter Optimization
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Model Stacking
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Model Stacking
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Model Stacking
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Model Stacking a Super-model Using Meta-features
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Neural Architecture Search
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● Developing novel neural architectures manually is time 
consuming, error prone

● Automatic methods for searching for neural network 
architectures

● Search space of architectures: chain, directed acyclic graph 
(DAG)

● Search strategy: exploration and exploitation trade-off
● Efficient performance estimation



Neural Architecture Search
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input L1 L2 Ln outputchain

inputDAG output



Neural Architecture Search
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Controller RNN Train child NN
Evaluate performance

sample architecture A 
with probability p

update
controller

Figure source: Zoph et al, 2017.



Machine Learning Pipelines
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?



Machine Learning Pipelines
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Meta Data About
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• Data

• Task

• Solution



Gradient Based Methods
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• Differentiable primitives

• Form a directed acyclic graph (DAG)

• Differentiable programming: optimize end-to-end
End-to-end training of differentiable pipelines across machine learning frameworks, Mitar et al, 2017.



DARPA Data Driven Discovery of Models (D3M)
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• Goal: solve any task on any dataset specified by a user.

• Broad set of computational primitives as building blocks.

• Automatic systems for machine learning, synthesize pipeline and 
hyperparameters to solve a previously unknown data and problem.

• Human in the loop: user interface that enables users to interact with and improve 
the automatically generated results.

• Pipelines: pre-processing, feature extraction, feature selection, estimation, post-
processing, evaluation



Dataset Meta Features
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AutoML Systems
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• Bayesian optimization, hyperparameter tuning:
Autosklearn (Feurer et al, NIPS 2015), AutoWEKA (Kotthoff et al, JMLR 2017)

• Tree search of algorithms and hyperparameters, multi-armed bandit
Auto-Tuned Models (Swearingen et al, Big Data 2017)

• Deep reinforcement learning: expert iteration
AlphaD3M (Drori et al, AutoML 2018)

• Evolutionary algorithms
– TPOT (Olson et al, ICML 2016) machine learning pipelines as trees
– Autostacker (Chen et al, GECCO 2018) ML pipelines as stacked layers.

• Collaborative filtering: OBOE, Yang et al, 2018.

• Neural architecture search: AutoKeras: Jin et al, 2018.

• Stacking, ensembles: GluonAutoML, GCP-Tables, H2O



AlphaD3M Single Player Game Representation
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• Expert iteration: iterative improvement

Figure source: AlphaD3M: Machine Learning Pipeline Synthesis, Drori et  al, 2018.



Pipeline Encoding
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• Model meta-data, task, and entire pipeline chain as state rather than individual primitive



AutoML
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Figure source: AlphaD3M: Machine Learning Pipeline Synthesis, Drori et  al, 2018.



AutoML by Pipeline Synthesis
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Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement 
Learning and a Grammar, Drori et al 2019.



AutoML by Pipeline Synthesis
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Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement 
Learning and a Grammar, Drori et al 2019.

• Enforce a grammar on the solution, accept valid pipelines.



AutoML by Pipeline Synthesis
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Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement 
Learning and a Grammar, Drori et al 2019.



AutoML by Pipeline Synthesis
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Figure source: Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement 
Learning and a Grammar, Drori et al 2019.



Matrix Completion: Example Problem
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Naive Solution 

64



Naive Solution
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Content-Based Recommendation
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Problem
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Iterative Solution
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Collaborative Filtering Solution
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Collaborative Filtering Solution
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Neural Collaborative Filtering
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AutoML by Collaborative Filtering
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• Factors are datasets and algorithms

• Serves as fast warm start systems

datasets

algorithms

i,j



AutoML by Collaborative Filtering 
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Figure source: Oboe: Collaborative Filtering for AutoML Model Selection, Yang et al, 2019.



AutoML using Metadata Embeddings

74

• When approaching an ML or DS problem humans read the 
documentation

• Description of data and task
• Description of machine learning functions available for solution

• How can we allow an AutoML method to “read the descriptions or 
manual”?



AutoML using Metadata Embeddings
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• Humans read documentation

• Description of data and task
• Description of machine learning functions available for solution

• Use large scale transformer models to represent descriptions



AutoML using Metadata Embeddings
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Figure source: AutoML using metadata language embeddings, Drori et al 2019.



AutoML using Metadata Embeddings
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Figure source: AutoML using metadata language embeddings, Drori et al 2019.



AutoML using Metadata Embeddings
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Figure source: AutoML using metadata language embeddings, Drori et al 2019.



AutoML using a Dataset Graph Representation

● Node i: dataset
● Edge (i,j) between datasets: based on embedding of dataset description and meta-features
● Predicts machine learning pipeline for new dataset in real-time (ms), runs pipeline and tuning  in seconds
● GNN on graph of datasets sharing information between different datasets
● Embeddings of dataset descriptions and algorithm descriptions
● Leveraging  existing AutoML systems

79Figure source: Zero-shot AutoML, Drori et al 2020.



Zero-Shot AutoML
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Figure source: Zero-shot AutoML, Drori et al 2020.



Zero-Shot AutoML

81Figure source: Zero-shot AutoML, Drori et al 2020.



Zero-Shot AutoML
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Figure source: Zero-shot AutoML, Drori et al 2020.
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